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We present a new framework for finding the optimal transition paths of metastable sto-
chastic chemical kinetic systems with large system size. The optimal transition paths are
identified to be the most probable paths according to the Large Deviation Theory of sto-
chastic processes. Dynamical equations for the optimal transition paths are derived using
the variational principle. A modified Minimum Action Method (MAM) is proposed as a
numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory
Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli
are presented as numerical examples.
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1. Introduction

This paper addresses the important issues on transition paths and transition rates of complex stochastic chemical kinetic
systems exhibiting metastability. Metastable biochemical reacting systems influenced by stochastic effects are common and
abundant [1,2]. In a deterministic model, the system possesses different stable states and the dynamical trajectory converges
to one of the steady states depending upon the initial condition. Incorporating stochastic effects into chemical kinetic sys-
tems induces random convergence to deterministically stationary states and dynamic switching between different metasta-
ble states. Assuming ergodicity, the transition between different metastable states is guaranteed on the infinite time horizon.
Driven by small random perturbations when the system size is large, the time scales between the switchings are usually
much longer than the time scales of the relaxation to the deterministic stable states. In this case, transitions between differ-
ent metastable states are called rare events [3].

The stochastic chemical kinetic system is not only a successful model but also an effective simulation algorithm for chem-
ical reacting systems that takes into account the discreteness of molecular numbers as well as the stochastic effects on reac-
tion events [4–6]. It has found a wide range of applications in many different fields, including computational biology,
chemistry, material sciences, and communication networks. A recent motivation on the analysis and computation of stochas-
tic chemical kinetic systems arises from the stochastic modeling of Gene Regulatory Networks in living cells. The synthesis of
cellular proteins is a multi-step process. The genetic information stored in DNA directs the production of proteins through a
process called gene expression [7]. When a specific gene is expressed, its DNA is first transcribed into a single stranded
. All rights reserved.
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sequence of mRNA. The mRNA sequence is then translated into a sequence of amino acids as the protein is formed. A special
class of protein products called Transcription Factors (TFs) regulates the timing of the transcription of genes into mRNA. A
Gene Regulatory Network (GRN), describing a collection of reacting channels and species involved in gene expression, con-
sists of a set of genes, proteins, small molecules and their mutual regulatory interactions. From the point of view of modeling,
Gene Regulatory Networks, different from metabolic networks, involve fewer number of species and lower population of
molecules contained in a small volume within the cell; therefore stochastic effects have a significant impact on the reaction
pathways and stochastic models are particularly well suited to the study of the functionality of GRNs. In the mean time,
metastability plays a very important role in the dynamics of gene regulation in the sense that different stable profiles of gene
expression determine mutually exclusive phenotypic states and switchings between different stable states can be induced
by molecular fluctuations [8]. Classical examples of metastable systems in GRNs include the bacteriophage lambda virus
infection [9,10] and the lactose utilization network [11,12] in E. coli.

In [13,14], a WKB method is adopted to solve the forward master equation of stochastic chemical kinetic systems
assuming the large system size. Although it does provide explicit formulas and quite accurate numerical solutions for
the transition paths and transition rates, the WKB method is heuristic in nature. Some recent efforts have been also made
based on the Large Deviation Theory (LDT), which gives asymptotic probabilities for rare events. The main idea is that
when the system size goes to infinity, the limiting dynamics of the stochastic chemical kinetic system can be described
by a stochastic differential equation driven by Brownian noises, which implies that the Large Deviation Theory for diffusion
processes can be applied to find the most probable transition paths [15–17]. Even though this has been the common theme
in much of the recent works on this subject, the validity of the approach is still questionable. It has been noticed that the
LDT action functional takes a different form if we replace the Poisson noise in the system with a Brownian noise [18–20].
Therefore, the key issue of the identification of the optimal transition paths under the most general circumstances has not
been fully understood.

Another important issue is the designing of efficient numerical schemes to solve the optimal transition paths. In [17], a
Minimum Action Method (MAM) is introduced to obtain the optimal transition paths by numerically minimizing the LDT
action functional of the limiting diffusion process. The scheme suggested in [17] is a generalization of the original MAM pro-
posed in [21] for finding optimal transition paths of stochastic PDEs driven by additive space–time white noise. The method
in [21] is recently generalized in [22] to handle chemical kinetic systems effectively, assuming the noise driving the system is
non-degenerate. Meanwhile, it is realized in [17] that if the chemical reacting system is written in terms of the reaction
advancement coordinate, the limiting stochastic differential equation has a diagonal diffusion matrix. This greatly simplifies
the evaluation of the LDT action functional, especially when the original diffusion matrix is degenerate. But for general sit-
uations without either adopting the diffusion limit or assuming the non-degenerate noise, numerical methods for the opti-
mal transition paths of stochastic chemical kinetic systems are still not well studied.

This paper has two purposes. The first is to identify the optimal transition paths as minimizers of the action functional of
the Large Deviation Theory for stochastic processes. The dynamical equation satisfied by the optimal transition paths is de-
rived using the variational principle. It is shown that making use of the special structure of chemical reacting systems to
reformulate the system in terms of the reaction advancement coordinate still makes it much easier to compute the LDT ac-
tion functional and its gradient. Compared with previous works [15–17], the approach proposed here does not assume the
limiting diffusion process and avoids the inaccuracy that this assumption may induce. The second purpose of this paper is to
suggest a modified version of the Minimum Action Method for numerical solutions of the optimal transition paths. The
method minimizes the LDT action functional augmented by a boundary penalty using optimization schemes in the space
of all possible transition paths. We introduce a new smoothing technique for the numerical tractability of the LDT action
functional based on Taylor expansion. A multiscale numerical technique proposed in [17] is adopted here to handle the inner
and boundary terms of the transition paths in a hierarchical fashion, which achieves efficiency while keeping simplicity of
implementation. The scheme proposed in this paper does not require the non-degeneracy of the noise driving the system like
[22], therefore has a potential for wider applicability.

In the following, after introducing some backgrounds for stochastic chemical kinetic systems and the Large Deviation
Theory for chemical kinetic systems with large system size, we will identify the optimal transition paths as minimizers of
the LDT action functional and provide its dynamical equations. Then we will discuss the Minimum Action Method and its
modifications for chemical reacting systems. Finally, we will illustrate the method through the Toggle Switch Model [10]
and the Lactose Operon Model [12] of E. coli.
2. Stochastic chemical kinetic systems with large system size

The stochastic chemical kinetic system, also known as Kinetic Monte Carlo Method (KMC) [4] or Stochastic Simulation
Algorithm (SSA) [5,6], is the most successful and promising model for meso-scale kinetic systems in which reacting species
are usually in low molecular population therefore molecular fluctuations must be incorporated for an accurate account of the
dynamical features of the system. It describes the time evolution of an isothermal, spatially homogeneous mixture of chem-
ically reacting molecules contained in a fixed volume V. Suppose we have NS species of molecules Si¼1;...;NS

involved with MR

reactions Rj¼1;...;MR . Denote by integer xi the number of molecules of species Si. The state of the system is represented by the
molecular number of every reacting species:
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x ¼

x1

x2

..

.

xNS

0
BBBB@

1
CCCCA 2 NNS : ð1Þ
Each reaction Rj is characterized by a rate function aj(x) and a state change vector mj 2 NNS . We write
Rj ¼ ðaj; mjÞ: ð2Þ
Given system state x at time t, on the infinitesimal time interval [t, t + dt), the occurrences of the reactions are independent of
each other and the probability of each reaction Rj is given by aj(x)dt. After reaction Rj, the state of the system changes from x
to x + mj. The stoichiometric matrix m 2 RNS�MR is defined to be the matrix with the jth column to be mj, i.e.
m ¼

m1
1 m1

2 . . . m1
MR

m2
1 m2

2 . . . m2
MR

. . .

mNS
1 mNS

2 . . . mNS
MR

0
BBBB@

1
CCCCA: ð3Þ
The time evolution of the probability distribution of the state variable P(x, t) is described by the forward Kolmogorov master
equation:
oPðx; tÞ
ot

¼
X

j

ðajðx� mjÞPðx� mj; tÞ � ajðxÞPðx; tÞÞ: ð4Þ
Let xt be the state variable at time t. For any arbitrary smooth function f, the observable uðx; tÞ ¼ Ex0¼xf ðxtÞ satisfies the fol-
lowing backward Kolmogorov master equation:
ouðx; tÞ
ot

¼ Luðx; tÞ ¼
X

j

ajðxÞðuðxþ mj; tÞ � uðx; tÞÞ; ð5Þ
where L is defined to be the generator of the Markov process in the state space associated with the chemical kinetic system.
It is well known [23] that when the molecular numbers of all reacting species in the chemical kinetic system increase to

infinity, the stochastic process described by (4) converges to the following deterministic ODE on finite time intervals:
_yðtÞ ¼
X

j

mjbjðyðtÞÞ; ð6Þ
where we have rescaled the state variable and the reaction rate with the system size X such that
y ¼ x
X
; bðyÞ ¼ aðxÞ

X
: ð7Þ
It can be shown [23] that the strength of the noise diminishes on the scale of 1=
ffiffiffiffi
X
p

when X ?1. The limiting dynamics (6)
implies that when the system size X is large (but not 1), the state of the system is more likely to be found at the stable
stationary states of the deterministic system. If ergodicity is assumed, the precess will be able to escape from any local stable
set and switch to different metastable states. Driven by noise of small magnitudes, the time scale between the switchings is
much longer than that for the relaxation to the stable states. The Large Deviation Theory (LDT) of stochastic processes [18–
20] gives probabilistic estimates for rare events. Now we want to give a brief review for LDT. Suppose y; y0 2 RNS , the local
function is defined to be
‘ðy; y0Þ ¼ sup
h2RNS

hh; y0i �
X

j

bjðyÞðehh;mji � 1Þ
 !

: ð8Þ
For any absolutely continuous function u : ½0; T� ! RNs , the LDT action functional has the following form:
I½0;T�½u� ¼
Z T

0
‘ðuðtÞ; _uðtÞÞdt: ð9Þ
We set I[0,T][u] =1 when u is not absolutely continuous. Denote by uX the process generated by the following rescaled
equation with the initial state u0:
oPðy; tÞ
ot

¼
X

j

X bj y� mj

X

� �
P y� mj

X
; t

� �
� bjðyÞPðy; tÞ

� �
: ð10Þ
Consider the space Ds consisting of bounded functions defined from [0,T] to RNs with right hand continuity and left hand lim-
its endowed with the supremum norm. For any measurable set S 2 Ds, let
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I½0;T�½S� ¼ inf
fu:u2S;uð0Þ¼u0g

I½0;T�½u�: ð11Þ
It is proved in [18–20] that under certain regularity assumptions on the reaction rates and the accessible boundaries of the
reactions, the following Large Deviation Principle holds for any closed set C 2 Ds and open set O 2 Ds:
lim sup
X!1

1
X

ln PfuX 2 Cg 6 �I½0;T�½C�;

lim inf
X!1

1
X

ln PfuX 2 OgP �I½0;T�½O�:
ð12Þ
The above estimate means that we can assign a probability for each possible reaction path u in the configuration space such
that when X� 1 and d� 1,
PfkuX �uk < dg � expf�XI½0;T�½u�g: ð13Þ
The Large Deviation Theory suggests that the optimal transition paths should be the most probable transition paths that
minimize the LDT action functional (9). Numerical schemes using optimization techniques for solving the optimal transition
paths can also be proposed along this line. The challenge lies in the fact that the local function is not defined in an explicit
form and its computation could be very involved when the dimension of the system is large. First order derivative criterion
for the supremum in (8) gives the following equation:
y0 ¼
X

j

ehh
� ;mjibjðyÞmj; ð14Þ
where h* is the value of h at which the supremum is attained. The cost of solving the above nonlinear equation grows qua-
dratically with the dimension of the system. The dependence of the right hand side of (14) on y makes the pre-computing of
its factorization not worthwhile. The possible degeneracy of the stoichiometric matrix also raises the issue of the non-
uniqueness of the solution for (14), which may cause confusion on the definition of the optimal paths. In the following,
we will introduce the reaction advancement coordinate to handle the computation of the LDT action functional, which will
overcome the above difficulties.

3. Optimal transition paths of chemical kinetic systems

In this section, we want to identify the optimal transition paths as minimizers of the LDT action functional and derive the
dynamical equations satisfied by the optimal paths. First, we want to do some simplification of the chemical kinetic system
(2) using the special structure of chemical reactions to make the LDT action functional easier to work with. Define the aux-
iliary variable z such that
y ¼ y0 þ
X

j

zjmj: ð15Þ
The variable z introduced here is usually called the reaction advancement coordinate [24]. Each zj measures the total occur-
rence of reaction Rj. Notice that z 2 RMR . In terms of z, the reactions take the following form:
Rj ¼ ðcj; ejÞ; j ¼ 1; . . . ;MR; ð16Þ
where
cjðzÞ ¼ bjðyÞ; ð17Þ
and {ej}’s form an orthonormal basis of RMR such that
ei
j ¼ dij: ð18Þ
In other words, the stoichiometric matrix under the reaction advancement coordinate z becomes an identity matrix.
Notice that the total occurrence of a reaction is a non-decreasing function of time. As a consequence, any realistic reaction

pathway uðtÞ : ð½0; T� ! RMR in the configuration space specified by the reaction advancement coordinate z will have the
property of
_uðtÞP 0: ð19Þ
The local function ‘(	,	) has the following form in terms of z:
‘ðu; _uÞ ¼ sup
h2RMR

hh; _ui �
X

j

cjðuÞðehj � 1Þ
 !

: ð20Þ
When cj(u) = 0, it is very easy to verify that unless _uj ¼ 0, the above local rate function takes the value of positive infinity,
which means the path u(	) is unlikely to be followed by the real reaction event according to the LDT estimate (13). Since we
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are only interested the realistic paths, the following discussion is confined to the case of _uj ¼ 0 if cj(u) = 0. Using (19), the
local function ‘(	,	) can be explicitly solved such that:
‘ðu; _uÞ ¼
X

j

_uj ln
_uj

cjðuÞ

� �
� _uj þ cjðuÞ: ð21Þ
Notice that the above equality is still well defined when _uj is equal to zero due to the continuity of function y = x ln(x) at zero.
It can be seen that the introduction of the reaction advancement coordinate greatly simplifies the evaluation of the local
function. It avoids solving a large scale optimization problem involving complex matrix computation for Eq. (14) when
the dimension of the system is high.

The LDT action functional now has the following form:
I½0;T�½u� ¼
Z T

0

X
j

_uj ln
_uj

cjðuÞ

� �
� _uj þ cjðuÞ

 !
dt: ð22Þ
Suppose that we have two metastable sets S1; S2 
 RNs . The optimal transition path w between S1 and S2 should minimize the
LDT functional such that
I½0;T�½w� ¼min
u

I½0;T�½u�; ð23Þ
subjecting to the following boundary condition:
y0 þ m 	uð0Þ 2 S1; y0 þ m 	uðTÞ 2 S2; ð24Þ
where m ¼ ðm1; . . . ; mMR Þ is the Stoichiometric matrix of the chemical kinetic system. For most cases of interest, the metastable
states are attractors of the deterministic system defined by (6). For simplicity, we will focus on the situation when the meta-
stable states are stable fixed points of the above equation. More general situations when the metastable sets are limit cycles
or chaotic attractors will be discussed in future. Suppose A;B 2 RNS are two stationary states of (6). The boundary condition
(24) reduces to
y0 þ m 	uð0Þ ¼ A; y0 þ m 	uðTÞ ¼ B: ð25Þ
It can be seen that the undetermined boundary condition (24) and (25) follows from the definition of the reaction advance-
ment coordinate (15). It represents the fact that at metastable states, the reactions are in equilibrium but not shut off. The
reacting species are still being synthesized and degraded, although the processes are in balance with each other. It can also
be seen from the definition that the equilibrium states do not contribute to the action functional (22) since written in z, the
processes in balance satisfy the following equation:
_zjðtÞ ¼ cjðzðtÞÞ; ð26Þ
which sets the value of the LDT action functional (22) to zero. The variational principle implies that the optimal transition
path w should satisfy the following equation subjecting to boundary condition (25):
€wk ¼ _wk
X
‘

_w‘ r‘ckðwÞ
ckðwÞ

� rkc‘ðwÞ
c‘ðwÞ

� �
þrkc‘ðwÞ

� �
ð27Þ
for each k 2 {1, . . . ,MR}. The details of the derivation cab be found in Appendix.

4. Minimum Action Method for chemical kinetic systems

Now we want to discuss the numerical method for solving the optimal transition paths. The method that we are intro-
ducing here is a modification of the Minimum Action Method proposed in [17] for stochastic chemical kinetic systems gov-
erned by diffusion processes. The main idea is to proceed by evolving curves in the space of all possible transition paths with
a dynamics that relaxes to the most probable path such that a minimizer for the optimization problem (23) subjecting to
boundary condition (25) is obtained. The same idea has been applied in the original Minimum Action Method to solve
the optimal transition paths of stochastic partial differential equations driven by space–time white noise with fixed bound-
ary conditions [21]. New numerical challenges for chemical reacting systems arise from the non-smoothness of the LDT ac-
tion functional and the undetermined boundary condition (25). The discontinuity of the LDT action functional I[0,T][u] is
induced by the presence of the logarithmic function, which takes the value of negative infinity when _uðtÞ 6 0. Although
the optimal transition path should have non-negative time derivatives, we can not exclude the possibility of _uðtÞ 6 0 during
the computation, which will blow up the action functional and make any numerical scheme unstable. As shown before, the
computation of the LDT action functional becomes much easier after reformulating the system in the reaction advancement
coordinate. We will further introduce a smoothing technique based on the Taylor expansion to moderate I[0,T][u]. To deal
with the undetermined boundary condition (25), we adopt a standard constraint optimization technique to include penalty
terms in the LDT action functional. A multiscale technique will be employed to deal with the stiffness generated by the
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boundary penalty terms. To avoid overemphasizing the technical details of the scheme, we simply call the overall scheme
discussed here the ‘Minimum Action Method’.

First we want to address the issue of smoothing the LDT action functional I[0,T][u]. To mollify the logarithmic function in
I[0,T][u], we perform the following modification for the function y = ln(x) through Taylor expansion at x = 1:
lnmðxÞ ¼def ðx� 1Þ þ 	 	 	 þ ð�1Þm�1ðx�1Þm
m ; x 6 1;

lnðxÞ; x > 1:

(
ð28Þ
For any finite positive integer m, function lnm(x) defined as above will give us an mth order differentiable function defined on
the domain of all the real numbers. If we define the value of ln(x) to be �1 for x 6 0, lnm(x) converges to ln(x) pointwisely
when m ?1. Replacing ln(x) with lnm(x) in (22), we have the following moderated LDT action functional:
Im
½0;T�½u� ¼

Z T

0

X
j

_ujlnm _uj

cjðuÞ

� �
� _uj þ cjðuÞ

 !
dt: ð29Þ
Now we want to make a comparison with the Minimum Action Method for chemical kinetic systems proposed in [17]. Writ-
ten in reaction advancement coordinate z, the limiting diffusion process for the chemical kinetic system when the system
size X is large has the form:
_zjðtÞ ¼ cjðzðtÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cjðzðtÞÞ

p
ffiffiffiffi
X
p _wj

t ; j ¼ 1; . . . ;MR: ð30Þ
It is well known [25] that when X ?1, the limiting diffusion process (30) satisfies the Large Deviation Principle with the
Freidlin–Wentzell action functional:
ID
½0;T�½u� ¼

1
2

Z T

0

X
j

c�1
j ðuÞð _uj � cjðuÞÞ2dt: ð31Þ
If we approximate the logarithmic function in the LDT action functional with the first order term in the Taylor expansion on
the whole real domain:
lnð1þ xÞ � x; ð32Þ
we find that
I½0;T� � 2ID
½0;T�: ð33Þ
In other words, the Freidlin–Wentzell action functional for the diffusion limit of stochastic chemical kinetic systems is a first
order approximation for the LDT action functional. Consequently, the Minimum Action Method proposed in [17], which finds
the optimal transition path by minimizing the above Freidlin–Wentzell action functional, can be also seen as a first order
approximation for the scheme proposed here.

To handle the undetermined boundary condition (25), we adopt the same approach in [17] to introduce the following
augmented LDT action functional that includes boundary penalty terms:
Im
½0;T�½u;l� ¼ Im

½0;T�½u� þ
1

2l
fjy0 þ m 	uð0Þ � Aj2 þ jy0 þ m 	uðTÞ � Bj2g; ð34Þ
where l > 0 is the penalty parameter. By driving l to zero and seeking approximate minimizers for Im
½0;T�½u;l�, we penalize

constraint violations at the boundary with increasing severity. As l ? 0, the solutions should converge to the minimizer
of the action functional Im

½0;T�½u� with the constraint of boundary condition (25) being satisfied. In practice, we choose a se-
quence of values with lk ? 0 as k ?1 and solve the following minimization problem:
Im
½0;T�½wk;lk� ¼ min

u
Im
½0;T�½u;lk�: ð35Þ
As mentioned before, the main idea of the Minimum Action Method is to evolve curves in the space of transition paths and
search for minimizers of the LDT action functional. The simplest dynamics for this relaxation will be the following gradient
flow in the path space:
ou
os
¼ �

dIm
½0;T�½u;l�

du
; ð36Þ
where u(a,s), (0 6 a 6 T) denotes the evolving curve in the path space. The direct time discretization of the above equation
with an adaptive time step such that a line minimization along the action gradient is reached at each step will amount to the
Steepest Descent method. More efficient methods like Conjugate Gradient method or Quasi-Newton method [26] can also be
adopted to evolve the curves and solve (35). Special methods tailored for the optimization in the path space will be ad-
dressed in future. The basic procedure of this algorithm can be described as the following:
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S1. Initiate k = 0, choose penalty parameter l0 > 0, error threshold k0 > 0, and starting curve u0

S2. Solve (35) with starting curve uk to reach an approximate solution wk such that the absolute value of the action gra-
dient on the right hand side of (36) is smaller than kk;

S3. Reset starting curve uk+1 = wk and reduce parameters 0 < lk+1 < lk, 0 < kk+1 < kk. Repeat S2.

The space discretization of the LDT action functional is straightforward. We partition the domain [0,T] with a mesh of size
Da = 1/L and define the grid points:
a‘ ¼ ‘Da; ‘ ¼ 0;1; . . . ; L: ð37Þ

We use the midpoint rule to discretize the integral in the LDT action functional, which will give us
Im
½0;T�ðUÞ ¼

X
j

XL�1

‘¼0

Uj
‘þ1 �Uj

‘

Da
lnm Uj

‘þ1 �Uj
‘

Da
c�1

j
U‘þ1 þU‘

2

� � !
�

Uj
‘þ1 �Uj

‘

Da
þ cj

U‘þ1 þU‘

2

� �
; ð38Þ
where U‘ denotes the numerical approximation to u(a‘). The LDT action functional with boundary penalty can be defined
accordingly to be
Im
½0;T�ðU;lÞ ¼ Im

½0;T�ðUÞ þ
1

2l
fjy0 þ m 	U0 � Aj2 þ jy0 þ m 	UT � Bj2g: ð39Þ
The introduction of the penalty parameter l can generate stiffness when evolving the curve in the path space. This can be
seen from dynamics (36). After space discretization, it takes the form:
_U‘ ¼ �rU‘
Im
½0;T�ðUÞ; ‘ ¼ 1; . . . ; L� 1;

_U0 ¼ �rU0 Im
½0;T�ðUÞ � mT

l fy0 þ m 	U0 � Ag;
_UL ¼ �rUL Im

½0;T�ðUÞ � mT

l fy0 þ m 	UL � Bg;

8>><
>>: ð40Þ
where U‘=1, . . . , L�1 denotes the inner points and (U0,UL) denotes the boundary points of the transition path. There is a time
scale separation measured by l in Eq. (40). The slow variables U‘=1,. . .,L�1 evolve on a slow time scale of order O(1), while the
fast variables (U0,UL) evolve on a fast time scale of order O(l). The slow dynamics consists of the first L � 1 equations in (40)
while the fast dynamics is given by the last two equations. Direct simulation of system (40) will entail very small time steps
prescribed by l and most of the computing time will be spent on the simulation of the fast dynamics. Meanwhile, what is
more of interest is the slow variables U‘=1,. . .,L�1, which describe the optimal transition paths. Here we want to provide a mul-
tiscale scheme originally proposed in [17], which consists of two solvers organized with one nested in the other: An outer
solver for the slow variables only, with the coefficients of the slow dynamics being computed in an inner solver for the fast
dynamics only. At each iteration of step S2, the nested scheme does the following to solve the minimization problem (35):

M1. Inner solver: Fix slow variables U‘=1,. . .,L�1 as parameters. Solve the following minimization problem with respect to the
fast variables (U0,UL):
Im
½0;T�ðW0;U1;...;L�1;WL;lkÞ ¼ min

ðU0 ;ULÞ
Im
½0;T�ðU0;U1;...;L�1;UL;lkÞ; ð41Þ
stop when an approximate stationary solution (W0,WL) is reached such that for ‘ = 1, . . . ,L � 1,
max rU0 Im
½0;T�ðU;lkÞ

��� ���; rUL Im
½0;T�ðU;lkÞ

��� ���n o
6 rU‘

Im
½0;T�ðU;lkÞ

��� ���: ð42Þ
M2. Outer solver: Minimize Im
½0;T�ðW0;U1;...;L�1;WL;lkÞ with respect to the slow variables U‘=1,. . .,L�1 for one step. Repeat M1.

The inner and outer solvers can be implemented with any optimization algorithm. The rationale behind the above scheme
can be illustrated through (40). When the slow variables are fixed, the LDT action functional is still a well defined potential
for the fast variables. The fast dynamics should reach a quasi-equilibrium on a time scale of O(l), which is much faster than
the O(1) time scale on which the slow dynamics advances. At the same time, the quasi-equilibrium state of the fast dynamics
depends continuously on the slow variables and only need to be updated when there is a change in the latter. The same idea
has been applied to the stochastic simulation of chemical kinetic systems with multiple time scales (see [27,28] and the ref-
erence therein). As shown in [27,28], if we choose appropriate parameters in the inner and outer solvers, the above scheme
can achieve an increasing accuracy for smaller l with a computational cost independent of l. Notice that we have proposed a
stopping criterion for step M1 different from that proposed in [17], where it is required that the absolute value of the action
gradient with respect to the fast variables to be smaller than the same threshold kk as in the outer solver. Numerical exper-
iments have shown that the new stopping criterion is more efficient.

5. Numerical Example I: the toggle switch model

For a numerical example, we now consider the following Toggle Switch Model [10], which artificially realizes a genetic
switch consisting of two genes repressing each other’s expression, placed in a high copy plasmid in E. coli. Once expressed,
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each protein can bind particular DNA sites upstream of the gene that codes for the other protein, thereby represses its
expression. The transition paths of slightly different versions of the same system have been studied in [14–17]. The deter-
ministic equation describing the system has the following form:
_u ¼ a1
1þvb � u;

_v ¼ a2
1þuc � v;

ð43Þ
where u is the concentration of repressor 1, v is the concentration of repressor 2. ai=1,2 are the effective rates of synthesis of
repressor 1 and repressor 2, respectively. There are 4 reactions in the system, namely the synthesis and degradations of
repressor 1 and repressor 2. We choose the parameters in the Toggle Switch Model (43) to be the same as in [14] such that
a1 ¼ 156; a2 ¼ 30; b ¼ 3; c ¼ 1: ð44Þ
Incorporating the stochastic effects, the backward master equation has the following form:
om
ot
¼X

a1

1þ vb
m uþ 1

X
;v; t

� �
� m

� �
þ u m u� 1

X
;v; t

� �
� m

� �
þ a2

1þ uc m u;vþ 1
X
; t

� �
� m

� �
þ v m u;v� 1

X
; t

� �
� m

� �� 	
:

ð45Þ

The reaction advancement coordinate z can be given according to the state change vectors:
u

v

� �
¼

u0

v0

� �
þ z1

1
0

� �
þ z2

�1
0

� �
þ z3

0
1

� �
þ z4

0
�1

� �
: ð46Þ
The reaction rates in terms of z are
c1ðzÞ ¼
a1

1þ ðv0 þ z3 � z4Þb
;

c2ðzÞ ¼ u0 þ z1 � z2;

c3ðzÞ ¼
a2

1þ ðu0 þ z1 � z2Þc
;

c4ðzÞ ¼ u0 þ z3 � z4:

ð47Þ
The metastable states in the system, as plotted in Fig. 1, are
A ¼ ð0:00588;29:825Þ; B ¼ ð154:897;0:192Þ: ð48Þ
In the Minimum Action Method, the evolving path is discretized with L = 40 nodes equally distributed as in (37). The trun-
cation number in (29) for smoothing the action functional is chosen to be
m ¼ 1;2;3; . . . ð49Þ
We choose the computational parameters for the numerical iterations according to
lk ¼ kk ¼ k�k; k ¼ 0;1; . . . ; ð50Þ
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Fig. 1. Optimal transition path for the Toggle Switch Model from metastable state A to metastable state B when T = 10.
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for some k < 1. The Conjugate Gradient method is adopted for both inner and outer solvers. In Fig. 1, we show the optimal
transition paths for the time horizon of T = 10. The results qualitatively agree with those in [14] obtained using the WKB
method. Fig. 2 gives the values of the LDT action functional of the optimal transition paths for different values of truncation
number m. The transition path we get here is also highly consistent with that in [17] computed using the Freidlin–Wentzell
action functional for the limiting diffusion process. In other words, for this example, the higher order corrections in the LDT
action functional does not really change the optimal transition path.

6. Numerical example II: the E. Coli Lactose Operon

Now we consider another numerical example, namely the Lac Operon Induction Model in E. coli [12]. The Lac Operon is a
set of genes that encodes proteins required to import and digest the disaccharide lactose. At the molecular level, induction of
the operon in a non-glucose containing medium by a non-metabolizable inducer is controlled by a positive feedback loop
involving lac permease, lac repressor and lac inducer. In the absence of inducer, transcription of the operon is repressed
by the binding of repressor to the lac operator. When the inducer is added to the culture medium, it enters the cell where
it may indirectly initiate transcription by binding to the repressor so as to reduce repressor’s affinity to the operator. Once
the repressor is disengaged from the operator, transcription of the operon may be initiated. Lac permease, a gene product of
the operon, serves to import inducer, therefore positively affects its own expression.

In [12], one version of the Lactose Operon Induction Model is proposed in the form of the following ODE:
_Yt ¼ k1OT
1þ K1I2

t

1þ K1I2
t þ K2RT

� k2Yt ;

_It ¼
aIexYt

bþ Iex
� dðIt � IexÞ � k2It;

ð51Þ
where Y and I represent the cell-associated permease and intracellular inducer concentrations, respectively. RT and OT denote
the total concentrations, bound or unbound, of repressor and operator. Iex is the extracellular concentration of inducer. There
are totally 5 reactions represented by the above equation. The first reaction is the generation of permease through operon
transcription:
RGEN ¼ k1OT
1þ K1I2

1þ K1I2 þ K2RT
: ð52Þ
The second reaction is the active transport of inducer via permease:
RACTIVE ¼
aIexY
bþ Iex

; ð53Þ
where a and b denote the permease turnover number and the permease saturation constant, respectively. The turnover num-
ber represents the maximum number of inducer molecules that can be transported into the cell per permease in unit time.
The third reaction is the transport of inducer via processes independent of lactose permease. The rate function is given as
RFACILITATED ¼ dðI � IexÞ; ð54Þ
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Fig. 2. LDT action functionals of the optimal transition paths in the Toggle Switch Model for different values of the truncation number m.
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where d represents the transport coefficient. This functionality allows the concentration dependent nature of the facilitated
transport to be represented and naturally leads to an equilibration between I and Iex under balanced growth conditions. The
fourth and fifth reactions are the dilutions of Y and I due to growth, which is represented by the common reaction constant
k2. The parameters listed in Table 1 are chosen to be the same as in [12], in which the details on the sources of the parameters
can also be found.

The metastability of the Lactose Operon Induction Model is illustrated in Figs. 3 and 4 through the hysteresis curves of the
permease and intracellular inducer populations. In these hysteresis curves, the population of extracellular inducer Iex is in-
creased and decreased quasi-statically. For each Iex, we solve system (51) with an adaptive time step until a stable state is
reached. There are two types of stable states for (51), the first one is the uninduced state in which both the permease and the
intracellular inducer are in low molecular numbers, and the second one is the induced state with permease and intracellular
inducer being in large molecular numbers. It can be seen that when the population of the extracellular inducer is low, the
only stable state is the uninduced state, and when the population of the extracellular inducer is high, the only stable state is
the induced state. For the extracellular inducer populations between certain critical values, both the induced and uninduced
states are stable. Due to this separation of the stable states, the system exhibits a memory effect that the current state de-
pends on its history.

It can also be seen from Figs. 3 and 4 that there is a population scale separation between permease and intracellular in-
ducer. In the uninduced states, the molecular number of permease is of the order of O(100) and the molecular number of
intracellular inducer is in the range of O(104). In the induced states, the orders of the molecular numbers of permease
and intracellular inducer become O(103) and O(107), respectively. In other words, there is a O(104) scale separation in pop-
ulation between the two reacting species, which will induce a stiffness in the direct minimization of the LDT action func-
tional. Using the fact that stochastic effects have a less significant impact on reacting species in high molecular numbers,
a common simulation technique dealing with the stiffness of stochastic chemical kinetic systems with multiple population
scales is to either omit the fluctuations in high population species, or moderate the perturbation with a Brownian noise using
the limit diffusion process [29–31]. As shown in [23], this methodology is equivalent to approximating the original system
with lower order terms in the Taylor series, both in the backward equation (5) and the LDT action functional (29). Adopting
the same approach, we add the random perturbation only to the evolution of permease in equation (51), which will give the
following stochastic integral equation for the Lac Operon Model:
Table 1
Parameters in the Lactose Operon Induction Model

Parameter Value

k1 9 min�1

k2 0.0055 min�1

OT 0.6022
K1 3.309 � 10�8

K2RT 1 � 105

a 6 � 104 min�1

b 3.011 � 105

d 0.82 min�1
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Fig. 3. Hysteresis curves depicting the equilibrium molecular numbers of permease Y at different populations of extracellular inducer Iex.
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Yt ¼ Y0 þ X1
Z t

0
k1OT

1þ K1I2
s

1þ K1I2
s þ K2RT

ds

 !
� X2

Z t

0
k2Ys ds

� �
;

It ¼ I0 þ
Z t

0

aIexYs

bþ Iex
� dðIs � IexÞ � k2Is

� �
ds;

ð55Þ
where Xi=1, 2 are independent Poisson processes with
EðXiðuÞÞ ¼ u: ð56Þ
For simplicity, we are writing the above equation in original variables without rescaling with the system size X.
To apply the Minimum Action Method, we first need to identify the reaction advancement coordinate z as
Y

I

� �
¼ Z1

1
0

� �
þ Z2

0
1

� �
þ Z3

0
�1

� �
þ Z4

�1
0

� �
þ Z5

0
�1

� �
: ð57Þ
We solve the optimal transition paths for the time horizon
T ¼ 80: ð58Þ
The space discretization parameter for the transition path is fixed such that
L ¼ 100: ð59Þ
The computational parameters lk and kk are chosen to be the same as in (50). Fig. 5 gives the transition path when
Iex = 62188. The values of the LDT action functional (31) for the optimal transition paths obtained by using different trunca-
tion number m is provided in Fig. 6, with the system size X chosen to be 100.

7. Conclusion and future directions

We proposed a modified Minimum Action Method (MAM) for finding the optimal transition paths of chemical kinetic sys-
tems with large system size based on the Large Deviation Theory for Markov processes. The optimal transition paths are
solved using standard constraint optimization techniques. A smoothing technique is introduced to moderate the LDT action
functional. To handle the numerical stiffness generated by the boundary constraints, a multiscale scheme is employed to
handle the inner and boundary points in a nested structure. The method is a modification of the previously proposed Min-
imum Action Method for chemical Langevin equations. By incorporating the higher order terms in the LDT action functional,
the accuracy of the optimal paths is improved. New implementation of stopping criterion in the inner solver also speeds up
the algorithm.

The major limitation of the Minimum Action Method discussed here is that it turns very inefficient when the time horizon
T becomes large, since more space grid points (37) are needed for an accurate representation of the transition paths. At the
same time, an asymptotic estimate for the mean transition time can be given as the following [19,20]:
s � exp X inf
T

I½0;T�½wT�
� 	

; ð60Þ
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Fig. 6. Values of the LDT action functional for different truncation number m when the population of the extracellular inducer is Iex = 62188.
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which means that the evaluation of the mean transition time entails the computation of the optimal transition path when
T ?1. On the other hand, for systems like the Lac Operon induction, different versions of mathematical models with a wide
range of parameters have been proposed to explain the behaviors of the system [11,12]. Substituting the minimum LDT ac-
tion functionals obtained for finite time intervals into the above estimate (60) will give a transition time much longer than
the real biological processes. This could be a result of either the inefficiency of MAM on the infinite time horizon or the inac-
curacy of the model and its parameters. Notice that the situation when T ?1 has been handled successfully in [22,32] under
the assumption of the non-degeneracy of the noise. Therefore, future work will involve designing efficient numerical meth-
ods for finding optimal transition paths when T ?1 for systems driven by general noises and using the methods as a model
validation tool.
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Appendix A. Minimizers of the LDT action functional

Denote by w a minimizer of the action functional I[0, T] as defined in (22). Suppose g is a smooth function with g0 = gT = 0.
Differentiating I[0,T][w + eg] with respect to e at zero and taking the first order derivative to be zero, we have
Z T

0

X
j

_gj ln
_wj

cjðwÞ

 !
þ 1�

_wj

cjðwÞ

 !X
‘

r‘cjðwÞg‘
 !

dt ¼ 0: ð61Þ
For any k 2 {1, . . . ,MR}, the arbitrariness of g allows us to set gj = 0 for j 6¼ k. Then the above equality becomes
Z T

0

_gk ln
_wk

ckðwÞ

 !
þ
X

j

1�
_wj

cjðwÞ

 !
rkcjðwÞgk

 !
dt ¼ 0: ð62Þ
Integrating by parts and the arbitrariness of g will give
�
€wk

_wk
þ
P

‘r‘ckðwÞ _w‘

ckðwÞ
þ
X

j

1�
_wj

cjðwÞ

 !
rkcjðwÞ ¼ 0; ð63Þ
or equivalently
€wk ¼
_wkP

‘r‘ckðwÞ _w‘

ckðwÞ
þ _wk

X
j

1�
_wj

t

cjðwÞ

 !
rkcjðwÞ ¼
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‘r‘ckðwÞ _w‘

ckðwÞ
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X
‘

1�
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t

c‘ðwÞ

 !
rkc‘ðwÞ; ð64Þ
which gives (27).
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